Chức năng Acid gamma-aminobutyric

Chất dẫn truyền thần kinh

Chuyển hóa GABA, sự tham gia của các tế bào thần kinh đệm

động vật có xương sống, GABA hoạt động tại các khớp thần kinh ức chế trong não bằng cách liên kết với các thụ thể xuyên màng cụ thể trong màng plasma của cả quá trình tế bào thần kinh trước và sau synap. Sự gắn kết này làm cho việc mở các kênh ion cho phép dòng ion chloride tích điện âm vào trong tế bào hoặc các ion kali tích điện dương ra khỏi tế bào. Hành động này dẫn đến một sự thay đổi tiêu cực trong tiềm năng xuyên màng, thường gây ra siêu phân cực. Hai loại chung của thụ thể GABA được biết đến:[3]

Việc sản xuất, phát hành, hành động và suy thoái GABA ở một khớp thần kinh GABAergic rập khuôn

Các tế bào thần kinh sản xuất GABA là đầu ra của chúng được gọi là tế bào thần kinh GABAergic và có tác dụng ức chế chủ yếu ở các thụ thể ở động vật có xương sống trưởng thành. Các tế bào gai trung bình là một ví dụ điển hình của các tế bào GABAergic ức chế hệ thần kinh trung ương. Ngược lại, GABA thể hiện cả hành động kích thích và ức chế ở côn trùng, làm trung gian kích hoạt cơ bắp tại các khớp thần kinh giữa các dây thần kinh và tế bào cơ, và cả sự kích thích của một số tuyến.[4] Ở động vật có vú, một số tế bào thần kinh GABAergic, như tế bào đèn chùm, cũng có thể kích thích các đối tác glutamatergic của chúng.[5]

Các thụ thể GABAA là các kênh chloride được hoạt hóa bằng ligand: khi được kích hoạt bởi GABA, chúng cho phép dòng ion chloride chảy qua màng tế bào. Liệu dòng chloride này có khử cực hay không (làm cho điện áp trên màng tế bào ít âm hơn), shunting (không ảnh hưởng đến tiềm năng màng tế bào) hay ức chế/siêu phân cực (làm cho màng tế bào âm tính hơn) phụ thuộc vào hướng của dòng chảy chloride. Khi chloride ròng chảy ra khỏi tế bào, GABA đang khử cực; khi chloride chảy vào tế bào, GABA bị ức chế hoặc siêu phân cực. Khi lưu lượng ròng của chloride gần bằng 0, tác động của GABA là shunt. Ức chế shunting không có ảnh hưởng trực tiếp đến tiềm năng màng của tế bào; tuy nhiên, nó làm giảm tác dụng của bất kỳ đầu vào khớp thần kinh trùng hợp nào bằng cách giảm điện trở của màng tế bào. Ức chế shunting có thể "ghi đè" tác dụng kích thích của khử cực GABA, dẫn đến ức chế tổng thể ngay cả khi tiềm năng màng trở nên ít âm tính hơn. Người ta cho rằng một công tắc phát triển trong bộ máy phân tử kiểm soát nồng độ chloride bên trong tế bào làm thay đổi vai trò chức năng của GABA giữa giai đoạn sơ sinh và trưởng thành. Khi não bộ phát triển đến tuổi trưởng thành, vai trò của GABA chuyển từ kích thích sang ức chế.[6]

Phát triển não

Trong khi GABA là một chất dẫn truyền ức chế trong não trưởng thành, hành động của nó được cho là chủ yếu kích thích ở não đang phát triển.[6][7] Độ dốc của chloride được báo cáo là bị đảo ngược trong các tế bào thần kinh chưa trưởng thành, với khả năng đảo ngược của nó cao hơn tiềm năng màng nghỉ của tế bào; kích hoạt thụ thể GABA-A do đó dẫn đến dòng ion Cl - từ tế bào (nghĩa là dòng khử cực). Độ dốc khác biệt của chloride trong các tế bào thần kinh chưa trưởng thành được chứng minh chủ yếu là do nồng độ cao hơn của các chất đồng vận chuyển NKCC1 so với các chất đồng vận chuyển KCC2 trong các tế bào chưa trưởng thành. Các tế bào nội tiết GABAergic trưởng thành nhanh hơn ở vùng hải mã và máy móc báo hiệu GABA xuất hiện sớm hơn truyền glutamatergic. Do đó, GABA được coi là chất dẫn truyền thần kinh kích thích chính ở nhiều vùng trong não trước khi trưởng thành các khớp thần kinh glutamatergic.[8]

Trong các giai đoạn phát triển trước khi hình thành các tiếp xúc synap, GABA được tổng hợp bởi các tế bào thần kinh và hoạt động như một autocrine (hoạt động trên cùng một tế bào) và paracrine (hoạt động trên các tế bào gần đó).[9][10] Các biểu hiện hạch cũng góp phần rất lớn trong việc xây dựng quần thể tế bào vỏ não GABAergic.[11]

GABA quy định sự tăng sinh của các tế bào tiền thân thần kinh [12][13] sự di chuyển [14]biệt hóa [15][16] sự kéo dài của các tế bào thần kinh [17] và sự hình thành các khớp thần kinh.[18]

GABA cũng điều chỉnh sự phát triển của tế bào gốc phôi và tế bào thần kinh. GABA có thể ảnh hưởng đến sự phát triển của các tế bào tiền thân thần kinh thông qua biểu hiện yếu tố tế bào thần kinh có nguồn gốc từ não (BDNF).[19] GABA kích hoạt thụ thể GABAA, gây ra sự bắt giữ chu kỳ tế bào trong pha S, hạn chế sự tăng trưởng.[20]

Ngoài hệ thần kinh

Biểu hiện mRNA của biến thể phôi của enzyme sản xuất GABA GAD67 trong phần não của một con chuột Wistar một ngày tuổi, với biểu hiện cao nhất ở khu vực dưới bán cầu (svz) [21]

Bên cạnh hệ thống thần kinh, GABA cũng được sản xuất ở mức tương đối cao trong các tế bào sản xuất insulin của tuyến tụy. Các tế bào sec tiết ra GABA cùng với insulin và GABA liên kết với các thụ thể GABA trên các tế bào α đảo nhỏ lân cận và ức chế chúng tiết ra glucagon (sẽ chống lại tác dụng của insulin).[22]

GABA có thể thúc đẩy sự nhân lên và sống sót của các tế bào [23][24][25] và cũng thúc đẩy quá trình chuyển đổi tế bào α thành tế bào,, có thể dẫn đến các phương pháp điều trị mới cho bệnh tiểu đường.[26]

GABA cũng đã được phát hiện trong các mô ngoại biên khác bao gồm ruột, dạ dày, ống dẫn trứng, tử cung, buồng trứng, tinh hoàn, thận, bàng quang tiết niệu, phổi và gan, mặc dù ở mức độ thấp hơn nhiều so với tế bào thần kinh hoặc tế bào.. Các cơ chế GABAergic đã được chứng minh ở các mô và cơ quan ngoại vi khác nhau, bao gồm ruột, dạ dày, tuyến tụy, ống dẫn trứng, tử cung, buồng trứng, tinh hoàn, thận, bàng quang tiết niệu, phổi và gan.[27]

Các tế bào miễn dịch thể hiện thụ thể GABA [28][29] và sử dụng GABA có thể ức chế phản ứng miễn dịch viêm và thúc đẩy phản ứng miễn dịch "theo quy định", do đó chính quyền GABA đã được chứng minh là ức chế các bệnh tự miễn ở một số mô hình động vật.[23][30][31]

Năm 2018, GABA đã cho thấy điều chỉnh việc tiết ra một số lượng lớn hơn các cytokine. Trong huyết tương của bệnh nhân T1D, nồng độ 26 cytokine được tăng lên và trong số đó, 16 bị ức chế bởi GABA trong các xét nghiệm tế bào.[32]

Năm 2007, một hệ thống GABAergic kích thích đã được mô tả trong biểu mô đường dẫn khí. Hệ thống được kích hoạt khi tiếp xúc với các chất gây dị ứng và có thể tham gia vào các cơ chế của bệnh hen suyễn.[33] Hệ thống GABAergic cũng đã được tìm thấy trong tinh hoàn [34] và trong ống kính mắt.[35]

GABA xảy ra trong thực vật.[36][37]

Tài liệu tham khảo

WikiPedia: Acid gamma-aminobutyric http://www.chemspider.com/Chemical-Structure.116.h... http://www.journals.elsevier.com/pharmacology-and-... http://www.ijdpls.com/uploaded/journal_files/12040... http://nro.sagepub.com/cgi/pmidlookup?view=long&pm... http://gmd.mpimp-golm.mpg.de/Spectrums/499427bb-24... http://www.hal.inserm.fr/inserm-00484852 //pubmed.ncbi.nlm.nih.gov/10221989 //pubmed.ncbi.nlm.nih.gov/10227421 //pubmed.ncbi.nlm.nih.gov/10781032 //pubmed.ncbi.nlm.nih.gov/10908617